在不忘记以前的任务的情况下不断获得新知识的能力仍然是计算机视觉系统的具有挑战性问题。标准的持续学习基准专注于在离线设置中从静态IID图像学习。在这里,我们研究了一个更具挑战性和现实的在线持续学习问题,称为在线流学习。像人类一样,一些AI代理必须从连续的不重复数据流逐步学习。我们提出了一种新颖的模型,假设驱动的增强存储器网络(HAMN),其有效地使用“假设”的增强内存矩阵来巩固先前的知识,并重播重建的图像特征以避免灾难性的遗忘。与像素级和生成的重播方法相比,Hamn的优点是两倍。首先,基于假设的知识合并避免了图像像素空间中的冗余信息,并使内存使用更有效。其次,增强记忆中的假设可以重新用于学习新任务,提高泛化和转移学习能力。鉴于视频流缺乏在线增量类学习数据集,我们介绍并调整两个额外的视频数据集,Toybox和Ilab,用于在线流学习。我们还在Core50和在线CIFAR100数据集上评估我们的方法。我们的方法显着优于所有最先进的方法,同时提供更有效的内存使用情况。所有源代码和数据都在https://github.com/kreimanlab/augmem公开使用
translated by 谷歌翻译
Our education system comprises a series of curricula. For example, when we learn mathematics at school, we learn in order from addition, to multiplication, and later to integration. Delineating a curriculum for teaching either a human or a machine shares the underlying goal of maximizing the positive knowledge transfer from early to later tasks and minimizing forgetting of the early tasks. Here, we exhaustively surveyed the effect of curricula on existing continual learning algorithms in the class-incremental setting, where algorithms must learn classes one at a time from a continuous stream of data. We observed that across a breadth of possible class orders (curricula), curricula influence the retention of information and that this effect is not just a product of stochasticity. Further, as a primary effort toward automated curriculum design, we proposed a method capable of designing and ranking effective curricula based on inter-class feature similarities. We compared the predicted curricula against empirically determined effectual curricula and observed significant overlaps between the two. To support the study of a curriculum designer, we conducted a series of human psychophysics experiments and contributed a new Continual Learning benchmark in object recognition. We assessed the degree of agreement in effective curricula between humans and machines. Surprisingly, our curriculum designer successfully predicts an optimal set of curricula that is effective for human learning. There are many considerations in curriculum design, such as timely student feedback and learning with multiple modalities. Our study is the first attempt to set a standard framework for the community to tackle the problem of teaching humans and machines to learn to learn continuously.
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
人表皮生长因子受体2(HER2)生物标志物的免疫组织化学(IHC)染色在乳腺组织分析,临床前研究和诊断决策中广泛实践,指导癌症治疗和发病机制调查。 HER2染色需要由组织医学表演表演的艰苦组织处理和化学处理,这通常需要一天,以便在实验室中准备,增加分析时间和相关成本。在这里,我们描述了一种基于深度学习的虚拟HER2 IHC染色方法,其使用条件生成的对抗网络培训,训练以便将未标记/标记的乳房组织部分的自发荧光显微镜图像快速转化为明亮场当量的显微镜图像,匹配标准HER2 IHC染色在相同的组织部分上进行化学进行。通过定量分析证明了这一虚拟HER2染色框架的功效,其中三个董事会认证的乳房病理学家盲目地评级了HER2的几乎染色和免疫化化学染色的HER2整个幻灯片图像(WSIS),揭示了通过检查虚拟来确定的HER2分数IHC图像与其免疫组织化学染色的同类一样准确。通过相同的诊断师进行的第二种定量盲化研究进一步揭示了几乎染色的HER2图像在核细节,膜清晰度和染色伪像相对于其免疫组织化学染色的对应物的染色伪影等级具有相当的染色质量。这种虚拟HER2染色框架在实验室中绕过了昂贵,费力,耗时耗时的IHC染色程序,并且可以扩展到其他类型的生物标志物,以加速生命科学和生物医学工作流程的IHC组织染色。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG) is a widely adopted tool which is quick and simple to acquire. However, the problem of estimating continuous electrolyte concentrations directly from ECGs is not well-studied. We therefore investigate if regression methods can be used for accurate ECG-based prediction of electrolyte concentrations. Methods: We explore the use of deep neural networks (DNNs) for this task. We analyze the regression performance across four electrolytes, utilizing a novel dataset containing over 290000 ECGs. For improved understanding, we also study the full spectrum from continuous predictions to binary classification of extreme concentration levels. To enhance clinical usefulness, we finally extend to a probabilistic regression approach and evaluate different uncertainty estimates. Results: We find that the performance varies significantly between different electrolytes, which is clinically justified in the interplay of electrolytes and their manifestation in the ECG. We also compare the regression accuracy with that of traditional machine learning models, demonstrating superior performance of DNNs. Conclusion: Discretization can lead to good classification performance, but does not help solve the original problem of predicting continuous concentration levels. While probabilistic regression demonstrates potential practical usefulness, the uncertainty estimates are not particularly well-calibrated. Significance: Our study is a first step towards accurate and reliable ECG-based prediction of electrolyte concentration levels.
translated by 谷歌翻译
Candidate axiom scoring is the task of assessing the acceptability of a candidate axiom against the evidence provided by known facts or data. The ability to score candidate axioms reliably is required for automated schema or ontology induction, but it can also be valuable for ontology and/or knowledge graph validation. Accurate axiom scoring heuristics are often computationally expensive, which is an issue if you wish to use them in iterative search techniques like level-wise generate-and-test or evolutionary algorithms, which require scoring a large number of candidate axioms. We address the problem of developing a predictive model as a substitute for reasoning that predicts the possibility score of candidate class axioms and is quick enough to be employed in such situations. We use a semantic similarity measure taken from an ontology's subsumption structure for this purpose. We show that the approach provided in this work can accurately learn the possibility scores of candidate OWL class axioms and that it can do so for a variety of OWL class axioms.
translated by 谷歌翻译